
Marijn Kentie 1213660

m.a.kentie@student.tudelft.nl

IN4151 Computer Graphics Assignment 2

On-GPU ray traced terrain

1. Introduction

2. Background

3. Implementation

4. Observations and Results

5. Conclusions and improvements

6. References

A. Pixel shader

Figure 1: Voxel terrain in the video

game Comanche

Figure 2: Height map image

1. Introduction
Before the prevalence of polygon-based 3D accelerated

graphics, voxel-based terrain was a popular approach to

drawing the environments for game and simulation

software (see Figure 1). This terrain was always drawn

by the CPU, and the introduction of fast hardware

accelerated triangle rendering pushed voxels to the

background. Unpopular as they currently are, voxel

terrains do have a number of advantages over their

polygonal counterparts: curved surfaces and real-time

deformations are possible, and the terrain is extremely

easy to generate from a height map texture (see Figure

2). A height map codes terrain height as an image. In a

grayscale image, for example, white can mean maximum

height while black means the base level.

Modern, fully programmable GPUs are equipped with

flexible pixel shading units with facilities such as fast

texture lookups and support for branching. As such, it

seems promising to use the GPU to draw pixel-space

terrain. This report details an experiment to do this: using

a height map to draw terrain completely on the GPU,

requiring a minimal amount of vertex data. Ease of

implementation, features, flexibility and performance are

investigated.

Figure 3: Left to right: bump mapping, parallax mapping, parallax occlusion mapping

2. Background
Using the GPU to create the illusion of relief is a staple technique in the video game industry. Bump

mapping, a technique which uses a lookup texture to warp a surface's normal (and as such influence

its lighting), has been used for years to create the illusion of depth, for example to draw the bumpy

bricks of a wall. Parallax mapping builds on this by modifying the actual texture UV coordinates. Both

are described in [1]. Finally, relief mapping [2], also known as parallax occlusion mapping [3], extends

this further by allowing the perturbations to occlude one another. Figure 3 shows a comparison of

the mentioned techniques; note the differences in quality at grazing angles. Clearly, parallax

occlusion mapping creates the best illusion of relief.

Unlike the other techniques, parallax occlusion mapping is based on per-pixel ray tracing. Rays are

traced from the viewpoint into the object. A height map (as with voxel terrain) is used to describe the

terrain and mapped onto the surface. As the height map texture is on a surface that can have an

arbitrary orientation, the ray is first transformed into texture (tangent) space; this allows comparison

of the ray position with the height map.

As the ray is traced, its height is compared to the height map value. When the ray has ended up

underneath the height map, tracing is stopped and the ray's position in the texture plane is used to

index the diffuse texture for the surface: it is displayed as warped and the illusion of depth is created.

Usually, the height map is used to create the illusion of the surface being pushed down, as shown in

Figure 3. This allows the technique to be used on the original object, with no additional geometry

attached specifically for the effect. Additionally, note that the technique doesn't generate proper

silhouettes.

Parallax occlusion mapping was chosen as the basis for the GPU terrain implementation. Its height

map-based algorithm, use in current-generation video games (i.e. real-time applications), and

promising visual quality suggested it to be a good starting point.

3. Implementation
This section describes the process of creating the sample application used to investigate GPU based

terrain rendering. Section 3.1 lays out the general approach, 3.2 goes into the creation of a fixed

function style shader for testing, and 3.3 describes the terrain ray tracing shader. Sections 3.4 to 3.8

detail various extra functionality that was added. Finally, 3.9 goes into operation of the demo

application. Figure 4 and the title page show screen captures of the final result. The final terrain pixel

shader is included in appendix A.

Figure 4: Final terrain

Figure 5: Vertex data shown by

fixed function style shader in

wireframe mode

Figure 6: Height map ray tracing.

3.1 Approach
The implementation of the terrain ray tracing was done completely from scratch. The application was

created using C++ and Direct3D 10. D3D10 was chosen as it is centered around using the

programmable (shader) pipeline as opposed to being designed mostly for fixed function work.

Additionally, it was chosen because using it would be educational to the author, who only had prior

immediate mode OpenGL experience, from earlier graphics courses. Education was also the reason

why the application was created from scratch: doing this would give insight in how shaders are set up

and in which ways they interact with CPU-side data.

Looking at the parallax occlusion mapping papers, it was deemed possible to draw the terrain by ray

tracing inside a cube. All surfaces would have terrain drawn on them where needed, giving the

illusion of actually being surrounded by it, similar to in a VR cave. For simplicity's sake a unit cube

was chosen for this, and as such, the first goal was to get this cube set up and rendered. Note that for

all discussed shaders no geometry other than this one unit cube is sent to the GPU. Although the

application uses a vertex format with support for normals, color, etc. for debugging purposes, only

the vertex position is ever set; none of the other parameters are used.

3.2 Fixed function style shader
Both to get the hang of working with shaders, and to test

the construction of aforementioned unit cube, first a fixed

function style shader was created. This shader does

nothing more than apply the viewing and projection

transforms (there is no world transform as the world

consists of only this unit cube) and shading using the

vertex coordinates as color. Figure 5 shows this shader in

wireframe mode.

One problem that arose at this point was the fact that

rendering such as simple scene led to a frame rate of

7000+ frames per second. This actually made the

application behave in a laggy fashion, perhaps due to

overhead involved in processing so many frames. As such,

a timer was added to restrict the frame rate to a maximum of 60 FPS.

3.3 Ray tracing
The ray tracing part of the terrain shader is based on the

steps described for parallax occlusion mapping in [2]. A ray

is traced from the viewer to the world space position of

the pixel that is being rendered. When the ray has ended

up 'under' the height map (i.e. its height is less than that

assigned to the height map value at its position), its

position in the height map texture is used to sample the

object's (diffuse) texture. This warping of the object

texture creates the illusion of relief. Figure 6 shows the procedure: tracing is done between 'A' and

'B', an intersection is found at '3'. In this 2D example, point 3's X coordinate would then be used for

texture mapping.

The referenced paper called for transforming the ray to tangent space. This way, arbitrary surfaces

could be parallax mapped. However, as in our case we are working with an axis-aligned unit cube,

the transformation can be left out. Instead, the original, pre-transform vertex coordinates are passed

to the pixel shader. These are used as the end coordinates, 'B' in figure 6.

The eye point is also passed into the vertex shader as a parameter. At first it was tried to extract the

eye point from the translation part of the view transform matrix, but this proved impossible as view

rotations influence this translation column. As such, the program's camera handling routines were

modified to build the view matrix from a separate eye point.

The used ray coordinates match the world coordinates: X and Z are the flat plane, and Y is the height.

As such, when tracing, the ray's Y coordinate is checked with the height map value, and upon

intersection its X and Z values are used for the texture mapping. The pixel shader's task is to perform

this tracing between the pixel-interpolated eye- and end coordinates.

The actual tracing is done in a loop, by adding a fraction of the normalized view direction vector to

the eye position each iteration. This view direction vector is calculated by subtracting the eye

position from the ray end position. Both have been interpolated from the vertex shader stage. The

size of the fraction used each iteration determines the numbers of samples taken; in the shader it is

calculated as the user-provided sample amount divided by the viewing ray length. The higher the

number of samples taken, the more accurate intersections are found. This results in higher visual

quality. When an intersection has been found, the tracing loop is aborted and the found intersection

is used for texture mapping, as discussed.

Multiple constructions were tried for the actual tracing loop. The first attempt was a while-loop

which aborted when the ray went outside of the unit cube. A disadvantage of this was that six checks

had to be made (one for each box face), which was found to be relatively slow. The second attempt

was to have a while-loop abort when the length of the traced ray was equal to or larger than that of

the non-normalized viewing direction vector. This was fraught with glitches as inaccuracies meant

tracing was often ended too late.

Finally, a simple solution was found: a for-loop which is executed once for each sample taken. This

combines good accuracy with a simple, single check to determine whether the ray has been fully

traced. Additionally, an advantage of the for-loop construction is that the tracing is bound to be

stopped. While-loop based methods with break constructions led to GPU restarts when mistakes

were made which resulted in infinite loops.

Although standard parallax occlusion mapping does not create silhouettes, this technique does. If the

ray has been completely traced without finding an intersection, this means the viewer was looking

over, not at, the terrain for that pixel. The current pixel is discarded; discarding all non-intersection

pixels creates the terrain's silhouette. This is possible as the tracing is done inside a 3D cube:

intersections will always be found for the floor, but not for the walls and roof.

As the terrain is contained in an unit cube, by default its (maximum) height and X/Z side sizes are the

same. To be able to create lower terrain while still keeping the same height resolution, a height scale

factor was added. All height map reads are scaled by this factor, resulting in decreased terrain height.

Additionally, if the eye point is above the maximum terrain height (which can now be less than the

height of the cube), the ray start is moved to that maximum height as to not waste time sampling

where no terrain can ever be. Furthermore, the moved ray start point is verified to be still in the

cube; if not, the ray is discarded.

Finally, the number of repeats of the diffuse texture can be set. However, a single high-resolution

texture was found to look more pleasing, especially from high up where texture repeats become very

apparent.

3.4 Sampling improvements
Two improvements were made to obtain a better quality versus performance tradeoff. Firstly,

dynamic sampling rate selection was added. Steep rays, i.e. looking down on the terrain, do not

need as high a sample rate to find correct intersection as ones grazing the terrain do (for grazing rays

there is a chance of, for example, going 'through' a hill). A method to select a suitable sampling rate

between a set minimum and maximum is given in [3]: linear interpolation between the minimum and

maximum rates is used, using the dot product of the normal and viewing direction as the ratio. As in

our case the algorithm is always applied to a cube, no normals are needed (or even set) and one

minus the viewing direction Y coordinate is used as the ratio instead.

The second sampling improvement was the addition of a binary search step. After the linear search

as described in 3.3 has found an intersection, a set number of binary search steps are taken between

this intersection and the previous ray position, which lies outside the height volume. This way, the

effect of shooting too 'deep' into the terrain is alleviated with very little performance cost. Figure 7

shows a steep section of terrain with binary search disabled and enabled (eight iterations).

Figure 8: Deformed terrain

3.5 Skybox
As the terrain has proper silhouettes, non-intersection pixels are by default filled with the standard

viewport color. To create a more attractive scene, a skybox was added. No extra vertex data was

used for this: in an additional pass, the unit cube is resized (expanded in the XZ plane and decreased

in height) and positioned around the terrain cube. A cube map texture depicting sky and terrain is

applied; cubemap texture coordinates are simply generated in the box's vertex shader. The skybox is

clearly visible in the various screenshots in this report.

3.6 Deformations
Height maps can easily be modified, especially compared

to mesh data. As such, adding deformations such as

craters to the rendered landscape is rather simple. Figure

8 shows the terrain deformed with some craters.

Note that in the demo program, deformations are created

by copying a crater heightmap to a second texture, which

is sampled together with the height map. As such, two

texture reads are needed, but this was significantly easier

to implement. Additionally, it allows different resolutions

Figure 7: Binary search step disabled and enabled.

for the deformation- and height map textures and it allows the deformations to be turned off.

3.7 Occlusion
For the terrain to actually be useful in for example video games, it must be able to interact with

standard polygonal objects. One interaction is collision detection, which is not covered by the demo

application. Occlusion between the terrain and polygonal objects, however, is. The brightly colored

cube shown in the various screen captures is a polygonal object: it is the unit cube, resized and

reoriented, in an extra rendering pass. Occlusion with the terrain is accomplished by having the

terrain pixel shader output a depth value in conjunction with its color. The depth value is calculated

by transforming the view direction ray, which the ray tracing steps along, from world to projection

space and taking its Z coordinate divided by its W coordinate.

3.8 Lighting
Applying lighting to the terrain requires normals, which are obviously different from those of the

cube it is rendered on. The terrain normals can either be stored in a normal map texture, as used in

bump mapping, or calculated on the fly by obtaining the height map gradient, for example using a

Sobel filter [3]. Normal- and height map data can be combined together in one RGBA texture and

quicky looked up. On the other hand, calculating the normals on the fly is more broadly applicable:

no preprocessing is needed, and the height map can be generated or deformed in real-time. In the

demo application the on the fly approach is used. A Sobel filter is used on the height map texture to

calculate its derivatives. From these the normal is easily constructed. The Sobel filter code was found

online [4].

Once the normal for each rendered pixel is known, standard diffuse and specular lighting are easily

applied. The result of this is shown in Figure 4.

3.9 The application
Starting the demo application is simply a matter of running its executable. Apart from the viewpoint

window, it also launches a console window which shows the various controls the viewport accepts.

Movement is standard W/A/S/D keys, looking around can be done by holding down the right mouse

button and dragging. Pressing the 'C' key adds deformations to the landscape. Features such as

binary search and lighting can be toggled on and off, see the console output for more information.

The program's shaders are spread over multiple .fx files; these files define the shaders and passes

used by Direct3D. Header.fxh contains definitions of the various structures, samplers and states.

Terrain3.fx is the main effect file that is executed by the program: it describes the passes and

contains the ray tracing, lighting and binary search code. In turn it includes three other files.

Skybox.fx contains the vertex and pixel shaders which transform the unit cube into a textured skybox.

Smallbox.fx transforms the unit cube into the small, colored cube used to test occlusion. Finally,

Sobel.fx holds the code which calculates normal data from the height map.

4. Observations and results
While developing and running the demo application, a number of observations were made.

4.1 Ease of use, flexibility
Although creating the demo application was quite time consuming due to lack of understanding and,

even more so, lack of experience, for a seasoned graphics programmer the technique should be

straightforward to implement. Creating content for the technique is not very difficult: only a height

map texture is needed, and polygonal objects work together with the terrain without problems.

The terrain is simple to deform, and standard lighting methods work with it. One possible

disadvantage of using this type of terrain is that it locks one into using shaders: OpenGL style

texture/lighting calls will not influence it. But then, modern graphics programming is already largely

shader driven, as evidenced by DirectX 10's lack of fixed function support.

In short, this type of terrain is reasonably simple to implement, while not subjecting the rest of the

application it is used in to any significant limitations.

4.2 Quality and performance
The visual quality of the terrain is determined by two main factors: ray sample rate and height map

resolution. Higher ray sample rates result in more precise intersections, and prevent 'floating'

segments as shown in Figure 9, where no intersection was found for some points. Unfortunately,

increasing the sampling rate linearly increases the amount of work that needs to be done. 512

samples per ray was found to give reasonable visual quality, depending on the terrain steepness. To

match the crispness of polygonal terrain, extremely high numbers of samples, such as 2000+, had to

be used.

Height map resolution has the simple effect of determining how rounded the terrain looks. The

height map is bilinear filtered when it is sampled, and as such it does not look grainy (Figure 10

shows the scene with filtering off). However, this is obviously no substitute for higher resolution

textures, and close-up hills can be seen to consist of discrete slopes (bumpiness in Figure 11). Higher

resolution height maps are of course larger in memory, and slower to sample.

Figure 10: Terrain with no bilinear filtering

Figure 9: Sampling artifacts

Performance was rather disappointing, especially considering the imperfect visual quality. Although

frame rates of up to 300 frames per second were achieved on a Geforce GTX 275 GPU at 1440x900

pixels, performance fluctuated. With a dynamically selected sampling rate between 128 and 512

samples, frame rates dipped into the 40s when the full ray had to be traced (i.e. no intersection

found). On a more modest mobile Geforce 8400, real time performance could only be reached at low

(320x240) resolutions. Table 1 shows the performance impact of various features discussed in

section 3. Predictably, the largest performance impacts are made by operations that are done for

each ray step. Frame rates were recorded with the 'FRAPS' program.

Feature FPS Notes

Bilinear search ~-1

Deformations -~40% Slow because second texture lookup used

Lighting 0

Occlusion 0

Dynamic sample rate +0 to +300% Dependent on viewing angle and min/max rate

Table 1: performance gain/penalty of various features on Geforce GTX 275. Frame rates are

relative to a constant 50 frames per second attained when viewing a sparse hill landscape.

5. Conclusions and improvements

5.1 Performance
Terrain drawn in a pixel shader has a high performance overhead: real-time ray tracing has to be

executed for every single viewport pixel. On the other hand, unlike what is the case with polygonal

terrain, the terrain complexity does not influence performance much, apart from perhaps requiring a

higher resolution height map and more precise tracing for small steep objects. The demo

application's speed left to be desired: even on high-end hardware frame rates were inconsistent, and

this was without other things such as AI, collisions detection, etc. going on. The lack of performance

might partly be due to the author's lack of experience in optimizing pixel shaders. Additionally, more

advanced techniques exist with which to gain speed:

Figure 11: Bilinear filtering does not fully hide low height map resolutions

 Safe-zone techniques. These techniques preprocess the height map data to find safe ray step

sizes for each pixel: instead of a fixed step size, the maximum safe step without missing an

intersection is used. This data is saved into unused channels of the height map texture.

Various similar techniques exist, such as cone step mapping [5] and dilation/erosion based

empty space skipping [6].

 Piecewise curve approximation [3] [7]. This technique works by finding the two points

between which the intersection lies, and then solving for the precise point by approximating

the height map as a piecewise linear curve. This technique results in higher visual quality at

lower sample rates than the linear/binary search used in the demo.

 Level of detail. [3] discusses using the mip map level of the surface to fall back to standard

bump mapping, which is must faster than parallax occlusion mapping. Depending on the

distance from the viewer, linear interpolation between the two techniques is used.

 Visibility sets. If high-resolution height maps are required, and sampling or storage costs

become prohibitive, the terrain could be split up into multiple cells, which are rendered

depending on pre-calculated potential visibility sets.

5.2 Quality
Performance increasing techniques might allow the ray tracing sample rate to be increased, leading

to an instant visual quality increase. Furthermore, self-shadowing should be possible by tracing from

light sources [2]. Shadows from polygonal objects on the terrain could be rendered using the stencil

buffer [8].

5.3 Reflection
Personally, I feel this assignment was very educational. It has acquainted me with Direct3D, shader

integration and writing, and working with ray tracing. As such, it covered multiple subjects discussed

in the lectures, and it was interesting to apply them in practice. The assignment was more time

consuming than anticipated: lack of experience, difficulty understanding the subject material, and

difficulty debugging the shaders were mostly to blame. Having been able to pick the subject myself

did make it worthwhile in the end though, as I was working on something I found interesting.

6. References

1. Pajer, Stephan. Modern Texture Mapping in Computer Graphics. 2006.

2. Policarpo, Fabio, Oliveira, Manuel M. and Comba, João. Real-Time Relief Mapping on Aribtrary

Polygonal Surfaces. s.l. : ACM, 2005.

3. Tatarchuk, Natalya. Dynamic Parallax Occlusion Mapping with Approximate Soft Shadows. s.l. :

ACM, 2006.

4. Zima, Catalin. Converting Displacement Maps into Normal Maps in HLSL. [Online] [Cited: 5 2009,

14.]

http://catalinzima.spaces.live.com/?_c11_BlogPart_BlogPart=blogview&_c=BlogPart&partqs=cat%3D

HLSL.

5. Dummer, Jonathan. Cone Step Mapping: An Iterative Ray-Heightfield Intersection Algorithm. 2006.

6. Kolb, Andreas and Rezk-Salama, Christof. Efficient Empty Space Skipping for Per-Pixel

Displacement Mapping. 2005.

7. Feng, Huamin Qu, et al. Ray Tracing Height Fields. 2003.

8. Microsoft Corp. Raycastterrain Sample. MSDN. [Online] [Cited: 5 14, 2009.]

http://msdn.microsoft.com/en-us/library/cc835725(VS.85).aspx.

9. Dachsbacher, Carsten and Tatarchuk, Natalya. Prism Parallax Occlusion Mapping with Accurate

Silhouette Generation. 2007.

A. Pixel shader
Shown below is the pixel shader code which executes the ray-tracing algorithm and applies lighting.

For brevity's sake, routines such as binary search and normal calculation have been omitted.

struct PS_INPUT

{

 float4 pos : SV_POSITION;

 float4 color: COLOR;

 float3 normal: NORMAL;

 float3 tex : TEXCOORD0;

 float3 eye: TEXCOORD2;

 float3 origPos: TEXCOORD3;

 float3 lightPos: TEXCOORD4;

};

struct PS_OUTPUT

{

 float4 color : SV_TARGET;

 float depth : SV_DEPTH;

};

PS_OUTPUT PS(PS_INPUT input)

{

 PS_OUTPUT o = (PS_OUTPUT)0;

 float3 rayStart=input.eye;

 float3 rayDir = input.origPos-rayStart;

 if(TERRAIN)

 {

 //If ray starts outside of maximum terrain height, move it to the max height

 if(rayStart.y>HEIGHT_SCALE)

 {

 rayStart+=rayDir*((rayStart.y-HEIGHT_SCALE)/-rayDir.y);

 //If moved ray is outside bounding box, drop it

 if(rayStart.x<0 || rayStart.x>1 || rayStart.z<0 || rayStart.z>1)

 {

 discard;

 }

 rayDir = input.origPos-rayStart;

 }

 float rayLength=length(rayDir);

 rayDir/=rayLength;

 //Calculate step size by using formula to increase sampling rate along steep angles

 // int nNumSteps = (int) lerp(g_nMaxSamples, g_nMinSamples, dot(vViewWS, vNormalWS)

); from Tatarchuk-POM

 int numSteps;

 if(DYNAMIC_SAMPLE)

 numSteps = (int) lerp(MIN_SAMPLES,MAX_SAMPLES,1-abs(rayDir.y));

 else

 numSteps = MAX_SAMPLES;

 float stepSize=rayLength/numSteps;

 float3 step = rayDir*stepSize;

 float3 rayPos=rayStart;

 float height;

 //Actual tracing

 for(int i=0;i<numSteps;i++)

 {

 //Get terrain height; stepsize is added so height zero terrain is still drawn.

 height =getHeight(rayPos.xz).r;

 if(height+stepSize>rayPos.y)

 break;

 rayPos+=step;

 }

 //Check result of tracing

 if(i>=numSteps) //More samples were tried to be taken than should be possible

 {

 discard;

 }

 else //Succesful intersection

 {

 if(BINARY_SEARCH) //If binary searching is enabled, find a more precise intersection

 {

 rayPos.xz = binarySearch(rayPos,step);

 }

 //Lighting

 o.color =

ambientIntensity*textureDiffuse.SampleLevel(samLinear,rayPos.xz*TEXTURE_REPEATS,0);

 if(LIGHTING)

 {

 float3 lightDir=normalize(lightPos-input.origPos);

 float3 normal = ComputeNormalsPS(textureHeightMap,rayPos.xz*TEXTURE_REPEATS);

 float3 halfway = normalize(lightDir-rayDir);

 o.color += diffuseIntensity*diffuseColor*saturate(dot(lightDir,normal)) +

specularIntensity*specularColor*pow(saturate(dot(lightDir,halfway)),specularExponent);

 }

 //Assign depth to intersection point by transforming the ray to view*projection space

 if(OCCLUSION)

 {

 float4 d = mul(float4(rayPos,1),View);

 d=mul(d,Projection);

 o.depth = d.z/d.w;

 }

 }

 return o;

}

